Gasturbine und Energiespeicher arbeiten zusammen um den Spitzenwert anzupassen
Im Zuge der Energiewende erzeugen mehr und mehr Haushalte in Deutschland mittlerweile selbst Strom. Dies funktioniert in einigen Fällen so gut, dass nicht einmal all der gewonnene Solarstrom komplett
Wie kann man den Nutzungsgrad der erneuerbaren Energie optimieren?
Vor allem die Verwendung von überschüssigem Strom für die Umwandlung in Wärme, etwa bei Wärmepumpen im Haushalt oder in Power-to-Heat-Anlagen im industriellen Maßstab, nimmt einen immer größeren Stellenwert ein und kann maßgeblich dazu beitragen, den Nutzungsgrad der erneuerbaren Energien zu optimieren.
Wie wichtig sind thermische Speicher für die Energiewende?
Die Bedeutung thermischer Energiespeicher für die Energiewende ist nicht zu unterschätzen: Schließlich entfallen rund 56 Prozent des gesamten deutschen Energieverbrauchs auf den Wärmemarkt.
Was sind mechanische Energiespeicher?
Mit Blick auf den wachsenden Anteil von Wind- und Sonnenstrom werden sie für die kontinuierliche Energieversorgung zukünftig noch wichtiger werden. Mechanische Energiespeicher nutzen die Prinzipien der klassischen Newtonschen Mechanik für die Energiespeicherung in potenzieller und kinetischer Form oder in Form von Druckenergie.
Wie berechnet man die Leistung einer Gasturbine?
Brennstoffen Erdgas und HEL – im weiten Leistungsbereich von 1 bis 200 MW – Einheitsleistungen (Turbineneintrittstemperaturen 900 bis 1300 °C bis heute fortgesetzt. Mit diesen Kraftwerksanlagen gekoppelt, so dass heute Gasturbinen sowohl in Stadtwerken kleiner Leistung als auch in großen Dampfanlagen vertreten sind. c κ = p ; p ⋅ Vκ = const .
Wie geht es weiter mit der erneuerbaren Energiewende?
Neben dem weiteren Ausbau der erneuerbaren Energien spielen vor allem effiziente und zuverlässige Speichertechnologien eine Schlüsselrolle für das Gelingen der Energiewende.
Wie hoch ist der Wirkungsgrad der Gasturbinen?
Die Austrittstemperaturen liegen bei ca. 650 °C. Die Gasturbinen haben abhängig von der Leistung einen Wirkungsgrad (elektrische Leistung bezogen auf zugeführte Wärme) von 35 % (10 MW el) bis über 40 % (100 MW el). Das Abgas wird in einem Abhitzekessel zur Erzeugung von überhitztem Dampf mit einer Temperatur >500 °C genutzt.