Energiespeichersektor Lithiumhexafluorphosphat
Sie kommt zu einer Zeit, in der der europäische Energiespeichersektor ein noch nie dagewesenes Wachstum erlebt. Neue Märkte entstehen, die Projektpipelines erweitern sich rasch, und die Innovationen sind für die Branche bahnbrechend. Ausstellung und Konferenz
How is lithium hexafluorophosphate prepared?
A promising preparation method for lithium hexafluorophosphate (LiPF 6) was introduced. Phosphorus pentafluoride (PF 5) was first prepared using CaF 2 and P 2 O 5 at 280°C for 3 h. LiPF 6 was synthesized in acetonitrile solvent by LiF and PF 5 at room temperature (20−30) for 4 h°C.
What is lithium hexafluorophosphate?
Lithium hexafluorophosphate is an inorganic compound with the formula Li PF 6. It is a white crystalline powder. LiPF 6 is manufactured by reacting phosphorus pentachloride with hydrogen fluoride and lithium fluoride Suppliers include Targray and Morita Chemical Industries Co., Ltd.
How does lithium hexafluorophosphate (LIPF 6) form POF 3?
In this work, we use density functional theory to explain the decomposition of lithium hexafluorophosphate (LiPF 6) salt under SEI formation conditions. Our results suggest that LiPF 6 forms POF 3 primarily through rapid chemical reactions with Li 2 CO 3, while hydrolysis should be kinetically limited at moderate temperatures.
What is lithium hexafluorophosphate acetonitrile?
Key words: lithium-ion batteries; lithium hexafluorophosphate; phosphorus pentafluoride; acetonitrile 1 Introduction Lithium hexafluorophosphate (LiPF 6 ) is a typical electrolyte salt for lithium-ion batteries.
What is the standard state of lithium hexafluorophosphate?
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). ?) Lithium hexafluorophosphate is an inorganic compound with the formula Li PF 6. It is a white crystalline powder.
Can density functional theory explain lithium hexafluorophosphate salt decomposition?
Major strides have been made to understand the breakdown of common LIB solvents; however, salt decomposition mechanisms remain elusive. In this work, we use density functional theory to explain the decomposition of lithium hexafluorophosphate (LiPF 6) salt under SEI formation conditions.