Der beste Feststoff zur Energiespeicherung
Vorteile von thermischer Energiespeicherung mit Steinen: Benötigen keine seltenen Materialien, verlieren mit der Zeit nicht an Leistung, haben keinen negativen Einfluss auf die Umwelt, sind
Was sind die Vorteile von Feststoff-Akkus?
Die höhere Sicherheit und eine höhere Energiedichte der Batterie stellen die zwei größten Vorteile von Feststoff-Akkus dar. Feststoffakkus lassen bis zu 100.000 Ladezyklen zu, über 33-fach mehr als eine Lithium-Ionen-Batterie. Feststoffbatterie Auto: mit Oxid-Elektrolyten finden die Speichergrößte Anwendung in der Automobilindustrie.
Wie steigert man den Energiegehalt von Festkörperbatterien?
Mit dem Ziel den Energiegehalt von Festkörperbatterien wesentlich zu steigern, werden alternative Elektrodenarchitekturen und Zelldesigns auf Basis pulverbasierter Formgebungsverfahren zur Herstellung kompakter und homogener Kompositelektroden entwickelt.
Was ist ein Energiespeicher?
Die grundlegende Idee für derartige Energiespeicher ist keine neue: schon ab dem 15. Jahrhundert wurden Federn dazu genutzt, um Energie für eine Vielzahl von Gerätschaften zu speichern, von mechanischen Uhren bis hin zu Industriemaschinen.
Was sind die vor- und Nachteile einer Feststoffbatterie?
Die klaren Vorteile der Feststoffbatterie mit Polymer-Elektrolyten sind die Kosten, die Verarbeitung und die Flexibilität des Materials. Ein wesentlicher Nachteil ist, dass die Polymer-Festelektrolyten erst bei einer Temperatur zwischen 50 °C und 80 °C eine entsprechende Leitfähigkeit erreichen.
Wie kann man die Energiedichte erhöhen?
Um eine Erhöhung der Energiedichte zu erreichen, ist eine einfache Substitution des flüssigen Elektrolyten durch eine feste Alternative allerdings nicht ausreichend. Zudem kommen je nach Anforderungsprofil und Anwendung unterschiedliche Materialien – Oxide, Sulfide, Polymere – als Elektrolytmaterialien infrage.
Wie hoch ist die Produktionskapazität von Feststoffbatterien?
Dann sollen die Feststoff-Batterien mit Oxid- und Sulfid-Elektrolyten kommerziell erhältlich sein. Das Fraunhofer ISI sieht für 2030 eine gesamte Produktionskapazität bei Feststoffbatterien mit Oxid- und Sulfid-Elektrolyten von 15 bis 55 Giga-Wattstunden (GWh). 2035 sollen dann zwischen 40 und 120 GWh möglich sein.