Keine Energiespeicherung im kapazitiven Element
Im Vergleich zu mechanischen Schaltern bieten induktive und kapazitive Näherungsschalter sowie optoelektronische Sensoren nahezu ideale Voraussetzungen für ihre sicherheitsrelevanten Anwendungen: Sie arbeiten berührungslos, verschleißfrei, weisen hohe Schaltfrequenzen und eine hohe Schaltgenauigkeit auf.
Was sind die Vorteile und Einschränkungen einer kapazitive Energieübertragung?
Diese prinzipbedingen Vorteile und Einschränkungen ergeben sich direkt aus den durch das Funktionsprinzip vorgegebenen Aufbau der eigentlich kapazitiven Übertragungsstrecke. Allgemein sollte für eine kapazitive Energieübertragung der Abstand zwischen der primärseitigen Quelle und sekundärseitigen Senke bzw. Last sehr klein sein.
Wie funktioniert die Energiespeicherung?
Die Energiespeicherung beruht auf der Umwandlung von Nickelhydroxid zum Nickeloxyhydroxid an der positiven Elektrode, bei der ein formaler Wertigkeitswechsel des Nickels von + 2 zu + 3 eintritt. An der negativen Elektrode wird beim Laden Cadmiumhydroxid (Cadmium mit der Wertigkeit + 2) zu metallischem Cadmium (Wertigkeit 0) umgewandelt.
Wie funktioniert die Energiespeicherung in wiederaufladbaren Lithiumionen-Batterien?
Die Energiespeicherung in wiederaufladbaren Lithiumionen-Batterien beruht auf der reversiblen Ein- und Auslagerung von Li-Ionen in sogenannte Aktivmaterialien durch elektrochemische Redoxreaktionen. Dies wird als Interkalation bezeichnet. Als Aktivmaterialien für die positive und negative Elektrode sind verschiedene Verbindungen möglich.
Was sind die wesentlichen Kenngrößen der Energiespeicher?
Die wesentlichen Kenngrößen der Energiespeicher sind ihre Spannungslage und der Energieinhalt. Die Spannungslage ergibt sich aus der Differenz der Elektrodenpotenziale und somit aus der Art der eingesetzten Elektroden. Je nach betrachtetem System werden Spannungsgrenzen für den Lade- und Entladeprozess vorgegeben.
Wie funktioniert die Energiespeicherung in Batterien?
Die Energiespeicherung in Batterien erfolgt in Form von Ladungsträgern, die durch Reduktions- und Oxidationsvorgänge aufgenommen bzw. abgegeben werden. Dabei erzeugt deren Fluss einen elektrischen Strom i (t): Ein Elektron (bzw. Proton mit der Ladung Q [As = Coulomb = C]) besitzt die Elementarladung
Welche Kapazitäten brauche ich für eine Energieübertragung?
Technisch sinnvoll nutzbare Kapazitäten für eine Energieübertragung im Bereich einiger Watt beginnen im Bereich zweistelliger Picofarad, was bei handtellergroßen Flächen für die Elektroden kaum Abstände größer als 1mm ermöglicht. Bei einigen Anwendungen ist ein solcher geringer Abstand allerdings keine praktische Einschränkung.